Definitions
from The American Heritage® Dictionary of the English Language, 5th Edition.
- noun A nonmagnetic solid solution of iron and another alloying element, usually assumed to be carbon unless otherwise specified, used in making corrosion-resistant steel.
from The Century Dictionary.
- noun A constituent of steel, obtained by quenching high carbon steel from a temperature of 1000° C. in a menstruum such as iced brine, which will produce very rapid cooling.
from the GNU version of the Collaborative International Dictionary of English.
- noun (Metallurgy) a solid solution of ferric carbide or carbon in iron; -- it cools to form pearlite or martensite.
from Wiktionary, Creative Commons Attribution/Share-Alike License.
- noun A
solid solution orcarbon orferric carbide iniron that exists insteel at high temperatures
from WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved.
- noun a solid solution of ferric carbide or carbon in iron; cools to form pearlite or martensite
Etymologies
from The American Heritage® Dictionary of the English Language, 4th Edition
from Wiktionary, Creative Commons Attribution/Share-Alike License
Support
Help support Wordnik (and make this page ad-free) by adopting the word austenite.
Examples
-
He suggested to me a theoretical problem left over from his work during the war on the cooling of steel through the austenite-pearlite transition, and I learned a fair amount of metallurgy in order to understand the physical basis of the phenomenon.
-
The growth is continually destroyed by the hammering, which should consequently be continued down to the upper critical temperature when the austenite crystals break up into ferrite and cementite.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
In the ordinary practice of hardening steels, the quenching is not so drastic, and the transformation of austenite back to ferrite and cementite is more or less completely effected, giving rise to certain transitory forms which are known as "martensite," "troostite," "sorbite," and finally, pearlite.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
However, if the heating has gone above the critical very far, the austenite crystals start to grow; a very short time at an extreme temperature will cause
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
Higher percentages of nickel change the martensitic structure to austenite, the steel then being non-magnetic.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
The structure is then austenite and the air-cooled structure of this steel is martensite.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
In order to produce quick and intense carburization the iron should preferably be above its upper critical temperature or 1,600°F., -- therefore the carbon absorbed immediately goes into austenite, or solid solution.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
Chromium steels are therefore capable of great hardness, due to the rapid cooling being able to retard the decomposition of the austenite.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
There are several theories to explain this reaction, but generally it is only necessary to remember that in hardening we quench steel from the austenite phase, and, due to this rapid cooling, the normal change from austenite to the eutectoid composition does not have time to take place, and as a consequence the steel exists in a partially transformed, unstable and very hard condition at atmospheric temperatures.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
-
If a piece of steel could be cooled instantly, doubtless austenite could be preserved and examined.
The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel 1916
fbharjo commented on the word austenite
early type of stainless (corrosion resistant) steel. Was it allegorically well-named after Jane Austen who was renown for her steadfastness and staying power? No matter. She is a pearl(ite?(light?))in her own write.
January 18, 2011